The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123726 Denominators of fractional partial quotients appearing in a continued fraction for the power series Sum_{n>=0} x^(2^n - 1)/(n+1)^s. 2
 1, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 25, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 36, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 25, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 49, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 25, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 36, 1, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A123725(n) = (A007814(n) + 2)*(-1)^A073089(n+1) are the numerators of the partial quotients. LINKS Antti Karttunen, Table of n, a(n) for n = 0..65537 FORMULA a(n) = (A007814(n) + 1)^2 = A001511(n)^2 for n>=1, with a(0)=1, where A007814(n) is the exponent of the highest power of 2 dividing n. Multiplicative with a(2^e) = (e + 1)^2, a(p^e) = 1 for odd prime p. - Andrew Howroyd, Jul 31 2018 EXAMPLE Surprisingly, the following analog of the Riemann zeta function: Z(x,s) = Sum_{n>=0} x^(2^n-1)/(n+1)^s = 1 + x/2^s + x^3/3^s +x^7/4^s+.. may be expressed by the continued fraction: Z(x,s) = [1; f(1)^s/x, -f(2)^s/x, -f(3)^s/x,...,f(n)^s*(-1)^e(n)/x,...] such that the (2^n-1)-th convergent = Sum_{k=0..n} x^(2^k-1)/(k+1)^s, where f(n) = (b(n)+2)/(b(n)+1)^2 and e(n) = A073089(n+1) for n>=1, and b(n) = A007814(n) the exponent of highest power of 2 dividing n. MATHEMATICA Join[{1}, Table[(1 + IntegerExponent[n, 2])^2, {n, 1, 50}]] (* G. C. Greubel, Nov 01 2018 *) PROG (PARI) {a(n)=denominator(subst(contfrac(sum(m=0, #binary(n), 1/x^(2^m-1)/(m+1)), n+3)[n+1], x, 1))} (PARI) /* a(n) = (A007814(n)+1)^2: */ {a(n)=if(n==0, 1, (valuation(n, 2)+1)^2)} (MAGMA)  cat [(Valuation(n, 2) + 1)^2: n in [1..50]]; // G. C. Greubel, Nov 01 2018 CROSSREFS Cf. A123725 (numerators); A007814, A073089, A001511. Sequence in context: A143469 A331147 A208508 * A323600 A336851 A138675 Adjacent sequences:  A123723 A123724 A123725 * A123727 A123728 A123729 KEYWORD frac,nonn,mult AUTHOR Paul D. Hanna, Oct 12 2006 EXTENSIONS Ref to A001511 added by Franklin T. Adams-Watters, Dec 22 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 16:13 EDT 2020. Contains 337432 sequences. (Running on oeis4.)