login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123726 Denominators of fractional partial quotients appearing in a continued fraction for the power series Sum_{n>=0} x^(2^n - 1)/(n+1)^s. 2
1, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 25, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 36, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 25, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 49, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 25, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 36, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A123725(n) = (A007814(n) + 2)*(-1)^A073089(n+1) are the numerators of the partial quotients.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..65537

FORMULA

a(n) = (A007814(n) + 1)^2 = A001511(n)^2 for n>=1, with a(0)=1, where A007814(n) is the exponent of the highest power of 2 dividing n.

Multiplicative with a(2^e) = (e + 1)^2, a(p^e) = 1 for odd prime p. - Andrew Howroyd, Jul 31 2018

From Amiram Eldar, Dec 29 2022: (Start)

Dirichlet g.f.: zeta(s)*(4^s+2^s)/(2^s-1)^2.

Sum_{k=1..n} a(k) ~ 6*n. (End)

EXAMPLE

Surprisingly, the following analog of the Riemann zeta function:

Z(x,s) = Sum_{n>=0} x^(2^n-1)/(n+1)^s = 1 + x/2^s + x^3/3^s +x^7/4^s+..

may be expressed by the continued fraction:

Z(x,s) = [1; f(1)^s/x, -f(2)^s/x, -f(3)^s/x,...,f(n)^s*(-1)^e(n)/x,...]

such that the (2^n-1)-th convergent = Sum_{k=0..n} x^(2^k-1)/(k+1)^s,

where f(n) = (b(n)+2)/(b(n)+1)^2 and e(n) = A073089(n+1) for n>=1,

and b(n) = A007814(n) the exponent of highest power of 2 dividing n.

MATHEMATICA

Join[{1}, Table[(1 + IntegerExponent[n, 2])^2, {n, 1, 50}]] (* G. C. Greubel, Nov 01 2018 *)

PROG

(PARI) {a(n)=denominator(subst(contfrac(sum(m=0, #binary(n), 1/x^(2^m-1)/(m+1)), n+3)[n+1], x, 1))}

(PARI) /* a(n) = (A007814(n)+1)^2: */ {a(n)=if(n==0, 1, (valuation(n, 2)+1)^2)}

(Magma) [1] cat [(Valuation(n, 2) + 1)^2: n in [1..50]]; // G. C. Greubel, Nov 01 2018

CROSSREFS

Cf. A123725 (numerators), A007814, A073089, A001511.

Sequence in context: A360610 A331147 A208508 * A323600 A336851 A138675

Adjacent sequences: A123723 A123724 A123725 * A123727 A123728 A123729

KEYWORD

frac,nonn,mult

AUTHOR

Paul D. Hanna, Oct 12 2006

EXTENSIONS

Ref to A001511 added by Franklin T. Adams-Watters, Dec 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 08:34 EDT 2023. Contains 361419 sequences. (Running on oeis4.)