login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321314 Number of permutations of [n] where the length of the longest increasing subsequence is larger than the length of the longest decreasing subsequence. 4
0, 1, 1, 10, 42, 232, 1879, 15228, 131452, 1329136, 15106976, 182954700, 2363478435, 33096395494, 501248446126, 8094778608472, 138112754890488, 2487454752219208, 47344572399516136, 950682668010605104, 20055050996527350752, 442701537970743308588, 10202898078512473893032 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{k=1..n-1} A321316(n,k).
a(n) = (n! - A321313(n))/2.
a(n) = A321315(n) - A321313(n).
MAPLE
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j>
l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
f:= l-> `if`(l[1]<nops(l), h(l)^2, 0):
g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]),
g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])):
a:= n-> g(n$2, []):
seq(a(n), n=1..23);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[j > l[[k]], 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
f[l_] := If[l[[1]] < Length[l], h[l]^2, 0];
g[n_, i_, l_] := If[n == 0 || i == 1, f[Join[l, Table[1, {n}]]], g[n, i - 1, l] + g[n - i, Min[i, n - i], Append[l, i]]];
a[n_] := g[n, n, {}];
Array[a, 25] (* Jean-François Alcover, Aug 31 2021, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A003822 A087120 A222358 * A348095 A027149 A324512
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 03 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 00:47 EDT 2024. Contains 373629 sequences. (Running on oeis4.)