OFFSET
1,5
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000
Jon Maiga, Computer-generated formulas for A323912, Sequence Machine.
Wikipedia, Dirichlet convolution.
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A083254(n/d) * a(d).
From Antti Karttunen, Nov 22 2024: (Start)
Following convolution formulas were conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly. The first one is certainly true, because A083254 is Möbius transform of A033879:
a(n) = Sum_{d|n} A323910(d).
(End)
PROG
(PARI)
up_to = 16384;
DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A083254(n) = (2*eulerphi(n)-n);
v323912 = DirInverse(vector(up_to, n, A083254(n)));
A323912(n) = v323912[n];
(PARI)
A083254(n) = (2*eulerphi(n)-n);
memoA323912 = Map();
A323912(n) = if(1==n, 1, my(v); if(mapisdefined(memoA323912, n, &v), v, v = -sumdiv(n, d, if(d<n, A083254(n/d)*A323912(d), 0)); mapput(memoA323912, n, v); (v))); \\ Antti Karttunen, Nov 22 2024
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 12 2019
STATUS
approved