This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323788 Number of non-isomorphic weight-n sets of multisets of multisets. 9
 1, 1, 5, 19, 88, 391, 1995, 10281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also the number of non-isomorphic strict multiset partitions of multiset partitions of weight n. All sets and multisets must be finite, and only the outermost may be empty. The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity. LINKS EXAMPLE Non-isomorphic representatives of the a(1) = 1 through a(3) = 19 multiset partitions:   {{1}}  {{11}}      {{111}}          {{12}}      {{112}}          {{1}{1}}    {{123}}          {{1}{2}}    {{1}{11}}          {{1}}{{2}}  {{1}{12}}                      {{1}{23}}                      {{2}{11}}                      {{1}}{{11}}                      {{1}{1}{1}}                      {{1}}{{12}}                      {{1}{1}{2}}                      {{1}}{{23}}                      {{1}{2}{3}}                      {{2}}{{11}}                      {{1}}{{1}{1}}                      {{1}}{{1}{2}}                      {{1}}{{2}{3}}                      {{2}}{{1}{1}}                      {{1}}{{2}}{{3}} CROSSREFS Cf. A005121, A007716, A049311, A050343, A283877, A306186, A316980, A317791, A318564, A318565, A318566, A318812. Cf. A323787, A323789, A323790, A323791, A323792, A323793, A323794, A323795. Sequence in context: A149799 A149800 A147099 * A154598 A184513 A149801 Adjacent sequences:  A323784 A323786 A323787 * A323789 A323790 A323791 KEYWORD nonn,more AUTHOR Gus Wiseman, Jan 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 16:48 EDT 2019. Contains 328022 sequences. (Running on oeis4.)