login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050343
Number of partitions of n into distinct parts with 2 levels of parentheses.
22
1, 1, 1, 4, 7, 14, 29, 57, 110, 217, 417, 794, 1513, 2860, 5373, 10063, 18740, 34750, 64221, 118199, 216775, 396297, 722136, 1311888, 2376575, 4293407, 7735941, 13903985, 24929763, 44595606, 79598328, 141770576, 251984463, 446991405, 791391545, 1398551523
OFFSET
0,4
LINKS
N. J. A. Sloane, Transforms
FORMULA
Weigh transform of A050342.
EXAMPLE
4 = ((4)) = ((3))+((1)) = ((3)+(1)) = ((3+1)) = ((2+1))+((1)) = ((2+1)+(1)).
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
g(n, i-1)+`if`(i>n, 0, g(n-i, i-1))))
end:
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i, i), j)*h(n-i*j, i-1), j=0..n/i)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(h(i, i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..50); # Alois P. Heinz, May 19 2013
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, g[n, i-1] + If[i>n, 0, g[n-i, i-1]]]] ; h[n_, i_] := h[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*h[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[ Binomial[ h[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 17 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved