OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
N. J. A. Sloane, Transforms
FORMULA
Weigh transform of A050342.
EXAMPLE
4 = ((4)) = ((3))+((1)) = ((3)+(1)) = ((3+1)) = ((2+1))+((1)) = ((2+1)+(1)).
MAPLE
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
g(n, i-1)+`if`(i>n, 0, g(n-i, i-1))))
end:
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(g(i, i), j)*h(n-i*j, i-1), j=0..n/i)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(h(i, i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..50); # Alois P. Heinz, May 19 2013
MATHEMATICA
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, g[n, i-1] + If[i>n, 0, g[n-i, i-1]]]] ; h[n_, i_] := h[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*h[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[ Binomial[ h[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 17 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved