OFFSET
0,2
COMMENTS
By definition, A049456(a(n))=Fib(n+2).
The rank of Fib(n+2) in row n of A049456 (regarded as an irregular triangle read by rows) is A128209(n) = A001045(n)+1. [Comment edited by N. J. A. Sloane, Nov 23 2016]
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
D. H. Lehmer, On Stern's Diatomic Series, Amer. Math. Monthly 36(1) 1929, pp. 59-67.
Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2).
FORMULA
G.f. : (1+x-4*x^2) / ((1-x)*(1-x^2)*(1-2*x)).
a(n) = 2^n + n + Jacobsthal(n).
From Colin Barker, Sep 29 2017: (Start)
a(n) = ((-1)^(1+n) + 2^(2+n) + 3*n) / 3.
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4) for n>3.
(End)
PROG
(PARI) Vec((1 + x - 4*x^2) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^30)) \\ Colin Barker, Sep 29 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 26 2004
STATUS
approved