login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199628
G.f.: (1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4)) for g=2.
1
1, 4, 7, 14, 32, 50, 71, 122, 185, 238, 319, 430, 528, 626, 752, 884, 1000, 1116, 1249, 1384, 1503, 1620, 1753, 1888, 2007, 2124, 2257, 2392, 2511, 2628, 2761, 2896, 3015, 3132, 3265, 3400, 3519, 3636, 3769, 3904, 4023, 4140, 4273, 4408, 4527, 4644, 4777, 4912, 5031, 5148, 5281, 5416, 5535, 5652, 5785, 5920, 6039, 6156, 6289, 6424
OFFSET
0,2
COMMENTS
Expansion of a Poincaré series [or Poincare series] for space of moduli M_2 of stable bundles.
LINKS
Bott, Raoul, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (1982), no. 2, 331-358; reprinted in Vol. 48 (October, 2011). See Eq. (4.30).
FORMULA
G.f.: (1+x)^4*(1+x^3)^6 / ((1-x^2)*(1-x^4))-x^4*(1+x)^4 / ((1-x^2)*(1-x^4)).
From Colin Barker, Nov 05 2019: (Start)
G.f.: (1 + x)^2*(1 - x^2 + 3*x^3 + 3*x^6 + x^9)*(1 + x^2 + 3*x^3 + 3*x^6 + x^9) / ((1 - x)^2*(1 + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>20.
(End)
MAPLE
f:=g->(1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4));
s:=g->seriestolist(series(f(g), x, 60));
s(2);
MATHEMATICA
CoefficientList[Series[(1 + x)^4 (1 + x^3)^6 / ((1 - x^2) (1 - x^4)) - x^4 (1 + x)^4 / ((1 - x^2) (1 - x^4)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 07 2016 *)
PROG
(Magma) g:=2; m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4)))); // Bruno Berselli, Nov 08 2011
(PARI) Vec((1 + x)^2*(1 - x^2 + 3*x^3 + 3*x^6 + x^9)*(1 + x^2 + 3*x^3 + 3*x^6 + x^9) / ((1 - x)^2*(1 + x^2)) + O(x^60)) \\ Colin Barker, Nov 05 2019
CROSSREFS
Sequence in context: A076975 A050343 A245002 * A049945 A234576 A076586
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 08 2011
STATUS
approved