OFFSET
0,2
COMMENTS
Expansion of a Poincaré series [or Poincare series] for space of moduli M_2 of stable bundles.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Bott, Raoul, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (1982), no. 2, 331-358; reprinted in Vol. 48 (October, 2011). See Eq. (4.30).
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
FORMULA
G.f.: (1+x)^4*(1+x^3)^6 / ((1-x^2)*(1-x^4))-x^4*(1+x)^4 / ((1-x^2)*(1-x^4)).
From Colin Barker, Nov 05 2019: (Start)
G.f.: (1 + x)^2*(1 - x^2 + 3*x^3 + 3*x^6 + x^9)*(1 + x^2 + 3*x^3 + 3*x^6 + x^9) / ((1 - x)^2*(1 + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>20.
(End)
MAPLE
f:=g->(1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4));
s:=g->seriestolist(series(f(g), x, 60));
s(2);
MATHEMATICA
CoefficientList[Series[(1 + x)^4 (1 + x^3)^6 / ((1 - x^2) (1 - x^4)) - x^4 (1 + x)^4 / ((1 - x^2) (1 - x^4)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 07 2016 *)
PROG
(Magma) g:=2; m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)^(2*g)*(1+x^3)^(3*g)/((1-x^2)*(1-x^4))-x^(2*g)*(1+x)^4/((1-x^2)*(1-x^4)))); // Bruno Berselli, Nov 08 2011
(PARI) Vec((1 + x)^2*(1 - x^2 + 3*x^3 + 3*x^6 + x^9)*(1 + x^2 + 3*x^3 + 3*x^6 + x^9) / ((1 - x)^2*(1 + x^2)) + O(x^60)) \\ Colin Barker, Nov 05 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 08 2011
STATUS
approved