login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A234576
Number of Weyl group elements, not containing s_1 or s_2, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type D and rank n.
2
4, 7, 14, 34, 73, 156, 345, 754, 1640, 3585, 7832, 17091, 37318, 81490, 177913, 388448, 848149, 1851826, 4043232, 8827953, 19274812, 42084287, 91886190, 200622866, 438036729, 956402452, 2088193969, 4559329474, 9954767528, 21735081361, 47456031280
OFFSET
4,1
LINKS
P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.
P. E. Harris, E. Insko, and L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055 [math.RT], 2013.
B. Kostant, A Formula for the Multiplicity of a Weight, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589.
FORMULA
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x^4*(x^3+3*x^2+3*x+4) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Dec 30 2013
EXAMPLE
For n = 8, a(8) = 34+14+3*7+4 = 73.
MAPLE
a:=proc(n::nonnegint)
if n<=3 then return 0:
elif n=4 then return 4:
elif n=5 then return 7:
elif n=6 then return 14:
elif n=7 then return 34:
else return
a(n-1)+a(n-2)+3*a(n-3)+a(n-4):
end if;
end proc:
MATHEMATICA
LinearRecurrence[{1, 1, 3, 1}, {4, 7, 14, 34}, 31] (* Jean-François Alcover, Nov 26 2017 *)
PROG
(PARI) Vec(-x^4*(x^3+3*x^2+3*x+4)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 30 2013
CROSSREFS
Sequence in context: A245002 A199628 A049945 * A076586 A240266 A064961
KEYWORD
nonn,easy
AUTHOR
Erik Insko, Dec 28 2013
STATUS
approved