login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A240266
Number of n X 2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.
1
4, 7, 14, 36, 72, 170, 411, 879, 2106, 4874, 10808, 25648, 58383, 132428, 310199, 704308, 1615735, 3746472, 8529529, 19647966, 45277950, 103456016, 238430432, 547803553, 1255188579, 2890336834, 6633676274, 15225374578, 35023723614
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-2) + 10*a(n-3) - a(n-4) - 5*a(n-5) - 15*a(n-6) + a(n-7) + 4*a(n-8) + 2*a(n-9) + 10*a(n-10) + 5*a(n-11) - 6*a(n-13).
Empirical g.f.: x*(1 + x)*(4 + 3*x + 3*x^2 - 21*x^3 - x^4 - 14*x^5 + 30*x^6 - 4*x^7 + 27*x^8 - x^9 + 2*x^10 - 12*x^11) / (1 - 2*x^2 - 10*x^3 + x^4 + 5*x^5 + 15*x^6 - x^7 - 4*x^8 - 2*x^9 - 10*x^10 - 5*x^11 + 6*x^13). - Colin Barker, Oct 27 2018
EXAMPLE
Some solutions for n=4:
..3..2....3..2....3..2....3..0....2..3....3..2....3..0....2..0....2..3....3..2
..3..1....2..1....3..2....3..2....2..1....2..1....2..3....2..0....2..1....3..2
..2..1....3..2....2..3....2..1....3..0....3..1....3..1....3..2....3..2....2..3
..2..0....3..1....3..1....2..1....2..3....2..3....3..2....2..1....3..2....3..2
CROSSREFS
Column 2 of A240271.
Sequence in context: A049945 A234576 A076586 * A064961 A137053 A214328
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 03 2014
STATUS
approved