login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240271
T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4
11
2, 4, 3, 10, 7, 4, 24, 35, 14, 7, 56, 157, 118, 36, 10, 132, 713, 919, 582, 72, 15, 312, 3263, 7562, 8265, 2000, 170, 24, 736, 14895, 64721, 126286, 49921, 8353, 411, 35, 1736, 68101, 563496, 2059061, 1363144, 382690, 37422, 879, 54, 4096, 311509, 4956889
OFFSET
1,1
COMMENTS
Table starts
..2....4......10.........24..........56..........132...........312
..3....7......35........157.........713.........3263.........14895
..4...14.....118........919........7562........64721........563496
..7...36.....582.......8265......126286......2059061......34514871
.10...72....2000......49921.....1363144.....40760821....1277623744
.15..170....8353.....382690....19210586...1063706501...63085436203
.24..411...37422....3076452...278945445..27923918285.3004792552569
.35..879..135463...19781372..3200032085.576407548906
.54.2106..580528..154994425.46095401280
.83.4874.2403439.1144262410
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 13]
Empirical for row n:
n=1: a(n) = 2*a(n-1) +2*a(n-3)
n=2: [order 26] for n>28
EXAMPLE
Some solutions for n=4 k=4
..2..3..0..3....3..2..2..2....3..0..0..2....3..0..2..0....3..2..2..2
..2..1..2..3....3..1..2..1....2..3..2..0....2..3..0..2....2..1..2..0
..2..0..1..0....2..1..2..2....3..1..2..0....3..1..1..0....3..2..0..2
..2..0..1..0....2..0..0..1....3..2..2..0....3..2..2..1....2..3..2..2
CROSSREFS
Column 1 is A159288(n+1)
Row 1 is A052912
Sequence in context: A183210 A226367 A324934 * A208324 A277416 A064691
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 03 2014
STATUS
approved