login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184513
L.g.f.: Sum_{n>=1} (x^n/n)/sqrt(1 - 2*(2*x)^n) = Sum_{n>=1} a(n)*x^n/n.
1
1, 5, 19, 89, 351, 1601, 6469, 28129, 116119, 491865, 2032317, 8519969, 35154029, 146022609, 601843209, 2485436161, 10218366631, 42036132185, 172427570701, 707155973729, 2894803671877, 11843754333361, 48394276165561, 197620176468097, 806190115015101, 3286819758296625
OFFSET
1,2
COMMENTS
Logarithmic derivative of A184512.
FORMULA
a(n) = Sum_{d|n} 2^((d-1)*(n/d-1)) * A000984(d-1) * d where A000984(n) = C(2n,n).
EXAMPLE
L.g.f.: L(x) = x + 5*x^2/2 + 19*x^3/3 + 89*x^4/4 + 351*x^5/5 + ...
The l.g.f. equals the series:
L(x) = x/sqrt(1-4*x) + (x^2/2)/sqrt(1-8*x^2) + (x^3/3)/sqrt(1-16*x^3) + (x^4/4)/sqrt(1-32*x^4) + (x^5/5)/sqrt(1-64*x^5) + ...
The g.f. of A184512 begins:
exp(L(x)) = 1 + x + 3*x^2 + 9*x^3 + 33*x^4 + 115*x^5 + 445*x^6 + ...
MATHEMATICA
a[n_] := DivisorSum[n, 2^((#-1)*(n/#-1)) * Binomial[2*(#-1), #-1] * # &]; Array[a, 25] (* Amiram Eldar, Aug 18 2023 *)
PROG
(PARI) {a(n)=if(n<1, 0, sumdiv(n, d, 2^((d-1)*(n/d-1))*binomial(2*(d-1), d-1)*d))}
(PARI) {a(n)=n*polcoeff(sum(m=1, n, (x^m/m)/sqrt(1-2*(2*x)^m+x*O(x^n))), n)}
CROSSREFS
Cf. A184512 (exp), A000984 (central binomial coefficients).
Sequence in context: A323788 A351373 A154598 * A149801 A149802 A149803
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 18 2011
EXTENSIONS
a(24)-a(26) from Amiram Eldar, Aug 18 2023
STATUS
approved