login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

L.g.f.: Sum_{n>=1} (x^n/n)/sqrt(1 - 2*(2*x)^n) = Sum_{n>=1} a(n)*x^n/n.
1

%I #12 Aug 20 2023 10:50:36

%S 1,5,19,89,351,1601,6469,28129,116119,491865,2032317,8519969,35154029,

%T 146022609,601843209,2485436161,10218366631,42036132185,172427570701,

%U 707155973729,2894803671877,11843754333361,48394276165561,197620176468097,806190115015101,3286819758296625

%N L.g.f.: Sum_{n>=1} (x^n/n)/sqrt(1 - 2*(2*x)^n) = Sum_{n>=1} a(n)*x^n/n.

%C Logarithmic derivative of A184512.

%F a(n) = Sum_{d|n} 2^((d-1)*(n/d-1)) * A000984(d-1) * d where A000984(n) = C(2n,n).

%e L.g.f.: L(x) = x + 5*x^2/2 + 19*x^3/3 + 89*x^4/4 + 351*x^5/5 + ...

%e The l.g.f. equals the series:

%e L(x) = x/sqrt(1-4*x) + (x^2/2)/sqrt(1-8*x^2) + (x^3/3)/sqrt(1-16*x^3) + (x^4/4)/sqrt(1-32*x^4) + (x^5/5)/sqrt(1-64*x^5) + ...

%e The g.f. of A184512 begins:

%e exp(L(x)) = 1 + x + 3*x^2 + 9*x^3 + 33*x^4 + 115*x^5 + 445*x^6 + ...

%t a[n_] := DivisorSum[n, 2^((#-1)*(n/#-1)) * Binomial[2*(#-1), #-1] * # &]; Array[a, 25] (* _Amiram Eldar_, Aug 18 2023 *)

%o (PARI) {a(n)=if(n<1,0,sumdiv(n,d,2^((d-1)*(n/d-1))*binomial(2*(d-1),d-1)*d))}

%o (PARI) {a(n)=n*polcoeff(sum(m=1, n, (x^m/m)/sqrt(1-2*(2*x)^m+x*O(x^n))), n)}

%Y Cf. A184512 (exp), A000984 (central binomial coefficients).

%K nonn

%O 1,2

%A _Paul D. Hanna_, Mar 18 2011

%E a(24)-a(26) from _Amiram Eldar_, Aug 18 2023