login
A318565
Number of multiset partitions of multiset partitions of strongly normal multisets of size n.
18
1, 6, 27, 169, 1029, 7817, 61006, 547537, 5202009, 54506262, 606311524, 7299051826, 92985064466, 1264720212352, 18137495642192, 275078184766323, 4379514178076452, 73235806332442156, 1280229713195027792, 23381809052104639236, 444740694108284116235, 8801030741502964613534
OFFSET
1,2
COMMENTS
A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities.
EXAMPLE
The a(2) = 6 multiset partitions of multiset partitions:
{{{1,1}}}
{{{1,2}}}
{{{1},{1}}}
{{{1},{2}}}
{{{1}},{{1}}}
{{{1}},{{2}}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Sum[Length[mps[m]], {m, Join@@mps/@strnorm[n]}], {n, 6}]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); StronglyNormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Dec 30 2020
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 29 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Dec 30 2020
STATUS
approved