login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202766
Floor( 10^n / sum(k=3..10^n, 1/k ) ).
1
6, 27, 167, 1206, 9442, 77563, 658097, 5714972, 50503822, 452425909, 4097411586, 37441633014, 344698955565, 3193520274110, 29747746198318, 278407464679282, 2616351626277085, 24676888631241563, 233501199663256017, 2215874110986269907
OFFSET
1,1
COMMENTS
n/(Sum_{k=3..n} 1/k) is a better approximation to pi(n) than Gauss' Li(n) for 15 < n < 2803.
REFERENCES
Wacław Sierpiński, Co wiemy, a czego nie wiemy o liczbach pierwszych. Warsaw: PZWS, 1961, p. 21.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..200
Eric Weisstein's World of Mathematics, Prime Counting Function
Eric Weisstein's World of Mathematics, Prime Number Theorem
FORMULA
a(n) = floor((10^n)/(Sum_{k=3..10^n} 1/k)).
a(n) ~ 10^n/(log(10^n) + gamma - 3/2).
EXAMPLE
a(2) = 27 because (10^2)/(Sum_{k=3..100} 1/k) = 27.1195448585....
MATHEMATICA
lst = {}; Do[AppendTo[lst, Floor[10^n/(NIntegrate[(1 - x^10^n)/(1 - x), {x, 0, 1}, WorkingPrecision -> 20] - 1.5)]], {n, 13}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved