login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223557
Petersen graph (3,1) coloring a rectangular array: number of 2 X n 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0.
1
6, 27, 171, 1089, 6939, 44217, 281763, 1795473, 11441259, 72906921, 464583411, 2960456193, 18864859707, 120212193177, 766025913411, 4881332621169, 31105224694539, 198211242377097, 1263057797861523, 8048559615522273
OFFSET
1,1
COMMENTS
Row 2 of A223556.
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) - 4*a(n-2) for n>3.
Empirical g.f.: 3*x*(2 - x)*(1 - 2*x) / (1 - 7*x + 4*x^2). - Colin Barker, Aug 21 2018
EXAMPLE
Some solutions for n=3:
..0..1..0....0..3..4....0..1..0....0..1..0....0..1..0....0..2..1....0..3..0
..0..2..5....4..5..2....0..3..0....0..2..1....0..1..0....1..2..1....4..1..4
CROSSREFS
Cf. A223556.
Sequence in context: A144013 A318565 A092854 * A289022 A060977 A267630
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 22 2013
STATUS
approved