login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289022
Wiener index of the n-Apollonian network.
5
6, 27, 204, 1941, 19572, 198567, 1999056, 19931337, 196939572, 1930784091, 18802964760, 182062831005, 1754100012108, 16826739416271, 160799296563312, 1531421717572401, 14540848734272388, 137690120683444995, 1300613432805623496, 12258142039717884549
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Apollonian Network
Eric Weisstein's World of Mathematics, Wiener Index
Index entries for linear recurrences with constant coefficients, signature (23, -174, 448, -29, -1221, 2088, -4050, 2916).
FORMULA
a(n) = Sum_{k=1..1+floor(2*n/3)} k*A289722(n,k).
a(n) = 23*a(n-1) - 174*a(n-2) + 448*a(n-3) - 29*a(n-4) - 1221*a(n-5) + 2088*a(n-6) - 4050*a(n-7) + 2916*a(n-8).
G.f.: x*(6 - 111*x + 627*x^2 - 741*x^3 - 1497*x^4 + 2862*x^5 - 5670*x^6 + 8748*x^7)/((1 - x)*(1 - 3*x)^2*(1 - 9*x)^2*(1 + 2*x)*(1 + 2*x^2)).
MATHEMATICA
(* Start from Eric W. Weisstein, Sep 07 2017 *)
Table[(6655 + 31 (-1)^n 2^(n + 2) + 5 3^(1 + 2 n) (24 + 11 n) + 3^(n + 1) (1197 + 55 n) + 5 2^(5 + n/2) Cos[n Pi/2] - 155 2^((3 + n)/2) Sin[n Pi/2])/3630, {n, 20}]
LinearRecurrence[{23, -174, 448, -29, -1221, 2088, -4050, 2916}, {6, 27, 204, 1941, 19572, 198567, 1999056, 19931337}, 20]
CoefficientList[Series[(6 - 111 x + 627 x^2 - 741 x^3 - 1497 x^4 + 2862 x^5 - 5670 x^6 + 8748 x^7)/((1 - x) (1 - 3 x)^2 (1 - 9 x)^2 (1 + 2 x) (1 + 2 x^2)), {x, 0, 20}], x]
(* End *)
PROG
(PARI)
R(dp, peq, p1, p2, x) = {[3*(dp - x + peq^2 + (2+7*x)*p1^2 + (7+2*x)*p2^2 + (4+2*x)*peq*p1 + 6*peq*p2 + 2*(4+5*x)*p1*p2 + x*(peq+3*p1+3*p2)), x*(1+3*p1), 2*(p1+p2), peq+p2]}
A(n, x) = {my(v=[6*x, x, 0, 0, x]); for(i=2, n, v=R(v[1], v[2], v[3], v[4], x)); v[1]}
Wiener(dp)=sum(i=1, poldegree(dp), i*polcoeff(dp, i));
a(n) = Wiener(A(n, x));
CROSSREFS
Cf. A067771 (edges), A192792, A289521, A289722.
Sequence in context: A318565 A092854 A223557 * A060977 A267630 A351737
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 02 2017
STATUS
approved