login
A323531
Number of square multiset partitions of integer partitions of n.
6
1, 1, 1, 1, 2, 2, 4, 5, 9, 12, 18, 24, 36, 48, 69, 97, 139, 196, 283, 402, 576, 819, 1161, 1635, 2301, 3209, 4469, 6193, 8571, 11812, 16291, 22404, 30850, 42414, 58393, 80305, 110578, 152091, 209308, 287686, 395352, 542413, 743603, 1017489, 1390510, 1896482
OFFSET
0,5
COMMENTS
A multiset partition is square if the number of parts is equal to the number of parts in each part.
EXAMPLE
The a(3) = 1 through a(9) = 12 square multiset partitions:
(3) (4) (5) (6) (7) (8) (9)
(11)(11) (21)(11) (21)(21) (22)(21) (22)(22) (32)(22)
(22)(11) (31)(21) (31)(22) (32)(31)
(31)(11) (32)(11) (31)(31) (33)(21)
(41)(11) (32)(21) (41)(22)
(33)(11) (41)(31)
(41)(21) (42)(21)
(42)(11) (43)(11)
(51)(11) (51)(21)
(52)(11)
(61)(11)
(111)(111)(111)
MATHEMATICA
Table[Sum[Length[Union@@(Union[Sort/@Tuples[IntegerPartitions[#, {k}]&/@#]]&/@IntegerPartitions[n, {k}])], {k, Sqrt[n]}], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 21 2019
STATUS
approved