login
A323580
Number of ways to fill a Young diagram with positive integers summing to n such that the rows are weakly decreasing and the columns are weakly increasing.
3
1, 1, 3, 6, 13, 23, 45, 76, 136, 225, 381, 611, 1001, 1570, 2489, 3842, 5948, 9022, 13714, 20501, 30649, 45262, 66721, 97393, 141888, 204993
OFFSET
0,3
EXAMPLE
The a(5) = 23 tableaux:
5 41 32 311 221 2111 11111
.
1 2 11 21 11 111 111 1111
4 3 3 2 21 2 11 1
.
1 1 11 11 111
1 2 1 11 1
3 2 2 1 1
.
1 11
1 1
1 1
2 1
.
1
1
1
1
1
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Sum[Length[Select[Reverse/@Sort/@Map[primeMS, facs[y], {2}], And@@(GreaterEqual@@@Transpose[PadRight[#]])&]], {y, Times@@Prime/@#&/@IntegerPartitions[n]}], {n, 10}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 18 2019
STATUS
approved