OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).
Also Heinz numbers of integer partitions of perfect squares, where the Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
10 is in the sequence because 10 = 2*5 = prime(1)*prime(3) and 1 + 3 = 4 is a square.
MAPLE
select(k-> issqr(add(numtheory[pi](i[1])*i[2], i=ifactors(k)[2])), [$1..400])[]; # Alois P. Heinz, Jan 22 2019
MATHEMATICA
Select[Range[100], IntegerQ[Sqrt[Sum[PrimePi[f[[1]]]*f[[2]], {f, FactorInteger[#]}]]]&]
PROG
(PARI) isok(n) = {my(f=factor(n)); issquare(sum(k=1, #f~, primepi(f[k, 1])*f[k, 2])); } \\ Michel Marcus, Jan 18 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 17 2019
STATUS
approved