The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047526 Numbers that are congruent to {1, 2, 7} mod 8. 1
 1, 2, 7, 9, 10, 15, 17, 18, 23, 25, 26, 31, 33, 34, 39, 41, 42, 47, 49, 50, 55, 57, 58, 63, 65, 66, 71, 73, 74, 79, 81, 82, 87, 89, 90, 95, 97, 98, 103, 105, 106, 111, 113, 114, 119, 121, 122, 127, 129, 130, 135, 137, 138, 143, 145, 146, 151, 153, 154, 159 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers h such that Fibonacci(h) mod 3 = 1. - Bruno Berselli, Oct 18 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA From Chai Wah Wu, May 30 2016: (Start) a(n) = a(n-1) + a(n-3) - a(n-4), for n > 4. G.f.: x*(x^3 + 5*x^2 + x + 1)/(x^4 - x^3 - x + 1). (End) From Wesley Ivan Hurt, Jun 10 2016: (Start) a(n) = 8*n/3 - 2 + cos(2*n*Pi/3) + 5*sin(2*n*Pi/3)/(3*sqrt(3)). a(3*k) = 8*k-1, a(3*k-1) = 8*k-6, a(3*k-2) = 8*k-7. (End) MAPLE A047526:=n->8*n/3-2+cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047526(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016 MATHEMATICA LinearRecurrence[{1, 0, 1, -1}, {1, 2, 7, 9}, 50] (* G. C. Greubel, May 30 2016 *) PROG (MAGMA) [n: n in [0..150] | n mod 8 in [1, 2, 7]]; // Wesley Ivan Hurt, Jun 10 2016 CROSSREFS Cf. A000045. Cf. A008586: numbers h such that Fibonacci(h) mod 3 = 0. Cf. A047443: numbers h such that Fibonacci(h) mod 3 = 2. Sequence in context: A323528 A073074 A034796 * A221280 A166570 A003668 Adjacent sequences:  A047523 A047524 A047525 * A047527 A047528 A047529 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 08:07 EST 2020. Contains 331081 sequences. (Running on oeis4.)