The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047527 Numbers that are congruent to {0, 1, 2, 7} mod 8. 2
 0, 1, 2, 7, 8, 9, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 32, 33, 34, 39, 40, 41, 42, 47, 48, 49, 50, 55, 56, 57, 58, 63, 64, 65, 66, 71, 72, 73, 74, 79, 80, 81, 82, 87, 88, 89, 90, 95, 96, 97, 98, 103, 104, 105, 106, 111, 112, 113, 114, 119, 120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Complement of numbers that are congruent to {3, 4, 5, 6} mod 8 (A047425). - Jaroslav Krizek, Dec 19 2009 LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA a(n) = 3*n-4*floor((n-2)/4)-6+(-1)^n. - Gary Detlefs, Mar 27 2010 G.f.: x^2*(1+x+5*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011 a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Sep 05 2014 From Wesley Ivan Hurt, May 21 2016: (Start) a(n) = (4n-5+i^(2n)+(1+i)*i^(-n)+(1-i)*i^n)/2 where i = sqrt(-1). a(2n) = A047522(n), a(2n-1) = A047467(n). (End) MAPLE seq(3*n-4*floor((n-2)/4)-6+(-1)^n, n=1..61); # Gary Detlefs, Mar 27 2010 MATHEMATICA Select[Range[0, 200], MemberQ[{0, 1, 2, 7}, Mod[#, 8]]&] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 2, 7, 8}, 200] (* Harvey P. Dale, Sep 05 2014 *) PROG (MAGMA) [n : n in [0..100] | n mod 8 in [0, 1, 2, 7]]; // Wesley Ivan Hurt, May 21 2016 CROSSREFS Cf. A103127, A047425, A047467, A047522. Sequence in context: A093915 A152769 A283565 * A064517 A270804 A167457 Adjacent sequences:  A047524 A047525 A047526 * A047528 A047529 A047530 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 19:16 EST 2020. Contains 331153 sequences. (Running on oeis4.)