login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047425
Numbers that are congruent to {3, 4, 5, 6} mod 8.
3
3, 4, 5, 6, 11, 12, 13, 14, 19, 20, 21, 22, 27, 28, 29, 30, 35, 36, 37, 38, 43, 44, 45, 46, 51, 52, 53, 54, 59, 60, 61, 62, 67, 68, 69, 70, 75, 76, 77, 78, 83, 84, 85, 86, 91, 92, 93, 94, 99, 100, 101, 102, 107, 108, 109, 110, 115, 116, 117, 118, 123, 124
OFFSET
1,1
COMMENTS
Complement of numbers congruent to {0, 1, 2, 7} mod 8. - Jaroslav Krizek, Dec 19 2009
In general, sequences congruent to {a, a + i, a + 2i, ..., a + pi} mod k and a + p*i < k have a general form of (k - i*p)*floor(n/p) + i*n + a, from offset 0. - Gary Detlefs, Oct 20 2013
FORMULA
G.f.: x*(3+x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = 8*floor((n-1)/4) + ((n-1) mod 4) + 3.
a(n) = OR(n-1, 1) + OR(n-1, 2). - Gary Detlefs, Oct 20 2013
From Wesley Ivan Hurt, May 31 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (4*n-1-i^(2*n)-(1-i)*i^(-n)-(1+i)*i^n)/2 where i=sqrt(-1).
a(2k) = A047406(k), a(2k-1) = A047621(k). (End)
E.g.f.: 2 + sin(x) - cos(x) + 2*x*sinh(x) + (2*x - 1)*cosh(x). - Ilya Gutkovskiy, May 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2-sqrt(2))/4. - Amiram Eldar, Dec 26 2021
MAPLE
A047425:=n->8*floor((n-1)/4)+((n-1) mod 4)+3: seq(A047425(n), n=1..100); # Wesley Ivan Hurt, May 31 2016
MATHEMATICA
Flatten[# + {3, 4, 5, 6} &/@(8*Range[0, 15])] (* Harvey P. Dale, Jun 26 2011 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3, 4, 5, 6]]; // Wesley Ivan Hurt, May 31 2016
CROSSREFS
Sequence in context: A261459 A215249 A089912 * A048989 A356050 A299299
KEYWORD
nonn,easy
STATUS
approved