The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047428 Numbers that are congruent to {0, 1, 3, 4, 5, 6} mod 8. 3
 0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 88 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Table of n, a(n) for n=1..67. Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1). FORMULA G.f.: x^2*(1+2*x+x^2+x^3+x^4+2*x^5) / ((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2). - R. J. Mathar, Dec 07 2011 From Wesley Ivan Hurt, Jun 16 2016: (Start) a(n) = a(n-1) + a(n-6) - a(n-7) for n>7. a(n) = (24*n-27-3*cos(n*Pi)-6*cos(n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/18. a(6k) = 8k-2, a(6k-1) = 8k-3, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End) Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*Pi/16 + log(2)/8 - sqrt(2)*log(99-70*sqrt(2))/16. - Amiram Eldar, Dec 27 2021 MAPLE A047428:=n->(24*n-27-3*cos(n*Pi)-6*cos(n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/18: seq(A047428(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016 MATHEMATICA Select[Range[0, 100], MemberQ[{0, 1, 3, 4, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *) PROG (Magma) [n : n in [0..100] | n mod 8 in [0, 1, 3, 4, 5, 6]]; // Wesley Ivan Hurt, Jun 16 2016 CROSSREFS Cf. A047517, A047585. Sequence in context: A306588 A353300 A219636 * A218784 A039066 A304800 Adjacent sequences: A047425 A047426 A047427 * A047429 A047430 A047431 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 23:47 EDT 2024. Contains 374575 sequences. (Running on oeis4.)