The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304800 Solution (b(n)) of the complementary equation a(n) = b(n) + b(2n); see Comments. 3
 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 41, 42, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 64, 65, 67, 68, 69, 70, 72, 73, 75, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Define complementary sequences a(n) and b(n) recursively: b(n) = least new, a(n) = b(n) + b(2n), where "least new" means the least positive integer not yet placed.  See A304799 for a guide to related sequences. Empirically, {a(n) - 3*n: n >= 0} = {2,3} and {2*b(n) - 3*n : n >= 0} = {2,3,4,5}. LINKS Clark Kimberling, Table of n, a(n) for n = 0..10000 EXAMPLE b(0) = 1, so that a(0) = 2.  Since a(1) = b(1) + b(2), we must have a(1) >= 7, so that b(1) = 3, b(2) = 4, b(3) = 5, b(4) = 6, and a(1) = 7. MATHEMATICA mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); h = 1; k = 2; a = {}; b = {1}; AppendTo[a, mex[Flatten[{a, b}], 1]]; Do[Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]], {k}];   AppendTo[a, Last[b] + b[[1 + (Length[b] - 1)/k h]]], {500}]; Take[a, 200]  (* A304799 *) Take[b, 200]  (* A304800 *) (* Peter J. C. Moses, May 14 2008 *) CROSSREFS Cf. A304799. Sequence in context: A047428 A218784 A039066 * A197911 A298007 A026363 Adjacent sequences:  A304797 A304798 A304799 * A304801 A304802 A304803 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 07:28 EDT 2021. Contains 343821 sequences. (Running on oeis4.)