login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047423
Numbers that are congruent to {2, 3, 4, 5, 6} mod 8.
1
2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 58, 59, 60, 61, 62, 66, 67, 68, 69, 70, 74, 75, 76, 77, 78, 82, 83, 84, 85, 86, 90, 91, 92, 93, 94, 98, 99, 100, 101, 102
OFFSET
1,1
FORMULA
a(n+1) = 3*floor(n/5) + n + 2. - Gary Detlefs, Mar 12 2010
G.f.: x*(1+x)*(2*x^4-x^3+2*x^2-x+2) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Aug 03 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (8*n + 2 - 3*((n+4) mod 5))/5.
a(5k) = 8k-2, a(5k-1) = 8k-3, a(5k-2) = 8k-4, a(5k-3) = 8k-5, a(5k-4) = 8k-6. (End)
MAPLE
A047423:=n->8*floor(n/5)+[(2, 3, 4, 5, 6)][(n mod 5)+1]: seq(A047423(n), n=0..100); # Wesley Ivan Hurt, Aug 03 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{2, 3, 4, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Aug 03 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [2..6]]; // Wesley Ivan Hurt, Aug 03 2016
CROSSREFS
Sequence in context: A007093 A285469 A302706 * A032970 A137691 A215726
KEYWORD
nonn,easy
STATUS
approved