The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047422 Numbers that are congruent to {1, 2, 3, 4, 5, 6} mod 8. 4
 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..66. Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1). FORMULA G.f.: x*(1+x+x^2+x^3+x^4+x^5+2*x^6) / ((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2). - R. J. Mathar, Dec 05 2011 From Wesley Ivan Hurt, Jun 16 2016: (Start) a(n) = a(n-1) + a(n-6) - a(n-7) for n>7. a(n) = (24*n-21-3*cos(n*Pi)-4*sqrt(3)*cos((1+4*n)*Pi/6)-12*sin((1-2*n)*Pi/6))/18. a(6k) = 8k-2, a(6k-1) = 8k-3, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-7. (End) Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 + log(2)/2 + sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 28 2021 MAPLE A047422:=n->(24*n-21-3*cos(n*Pi)-4*sqrt(3)*cos((1+4*n)*Pi/6)-12*sin((1-2*n)*Pi/6))/18: seq(A047422(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016 MATHEMATICA Select[Range[0, 100], MemberQ[{1, 2, 3, 4, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *) PROG (Magma) [n : n in [0..100] | n mod 8 in [1..6]]; // Wesley Ivan Hurt, Jun 16 2016 CROSSREFS Cf. A047504, A047519. Sequence in context: A037475 A354047 A031487 * A340152 A160532 A047305 Adjacent sequences: A047419 A047420 A047421 * A047423 A047424 A047425 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 16:22 EDT 2024. Contains 372840 sequences. (Running on oeis4.)