login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047467
Numbers that are congruent to {0, 2} mod 8.
13
0, 2, 8, 10, 16, 18, 24, 26, 32, 34, 40, 42, 48, 50, 56, 58, 64, 66, 72, 74, 80, 82, 88, 90, 96, 98, 104, 106, 112, 114, 120, 122, 128, 130, 136, 138, 144, 146, 152, 154, 160, 162, 168, 170, 176, 178, 184, 186, 192, 194, 200, 202, 208, 210, 216, 218, 224, 226, 232
OFFSET
1,2
FORMULA
From R. J. Mathar, Sep 19 2008: (Start)
a(n) = 4*n - 5 - (-1)^n = 2*A042948(n-1).
G.f.: 2*x^2*(1+3x)/((1-x)^2*(1+x)). (End)
a(n) = 8*n - a(n-1) - 14 with a(1)=0. - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=2 and b(k)=2^(k+2)for k > 0. - Philippe Deléham, Oct 17 2011
a(n) = floor((8/3)*floor(3*n/2)). - Clark Kimberling, Jul 04 2012
Sum_{n>=2} (-1)^n/a(n) = Pi/16 + 3*log(2)/8. - Amiram Eldar, Dec 18 2021
E.g.f.: 6 + (4*x - 5)*exp(x) - exp(-x). - David Lovler, Jul 22 2022
MATHEMATICA
{#, #+2}&/@(8*Range[0, 30])//Flatten (* or *) LinearRecurrence[{1, 1, -1}, {0, 2, 8}, 60] (* Harvey P. Dale, Nov 30 2019 *)
PROG
(PARI) forstep(n=0, 200, [2, 6], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
(PARI) a(n) = 4*n - 5 - (-1)^n; \\ David Lovler, Jul 25 2022
CROSSREFS
Union of A008590 and A017089.
Sequence in context: A329952 A073886 A079930 * A079599 A126002 A110913
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Aug 06 2010
STATUS
approved