login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047468
Numbers that are congruent to {1, 2} mod 8.
2
1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 41, 42, 49, 50, 57, 58, 65, 66, 73, 74, 81, 82, 89, 90, 97, 98, 105, 106, 113, 114, 121, 122, 129, 130, 137, 138, 145, 146, 153, 154, 161, 162, 169, 170, 177, 178, 185, 186, 193, 194, 201, 202, 209, 210, 217, 218, 225, 226, 233
OFFSET
1,2
FORMULA
a(n) = 8*n - a(n-1) - 13 (with a(1)=1). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+x+6*x^2)/((1-x)^2*(1+x)). - Colin Barker, May 13 2012
a(n) = 1 + 8*floor((n-1)/2) + ((n-1) mod 2). - Alois P. Heinz, May 13 2012
a(n) = (-3*(3 + (-1)^n) + 8*n)/2. - Colin Barker, May 14 2012
a(1)=1, a(2)=2, a(3)=9, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Mar 26 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/16 + log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021
E.g.f.: 6 + ((8*x - 9)*exp(x) - 3*exp(-x))/2. - David Lovler, Sep 02 2022
MATHEMATICA
Flatten[#+{1, 2}&/@(8Range[0, 30])] (* or *) LinearRecurrence[{1, 1, -1}, {1, 2, 9}, 60] (* Harvey P. Dale, Mar 26 2013 *)
PROG
(PARI) a(n)=(n-1)\2*8+2-n%2 \\ Charles R Greathouse IV, May 14 2012
CROSSREFS
Union of A017077 and A017089.
Cf. A047467.
Sequence in context: A058890 A369205 A306998 * A032929 A226832 A320919
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Aug 06 2010
STATUS
approved