

A201892


Decimal expansion of the number x satisfying x^2+2x+3=e^x.


2



2, 7, 9, 9, 4, 7, 4, 3, 9, 7, 7, 8, 6, 3, 8, 9, 6, 6, 7, 2, 6, 0, 6, 1, 6, 0, 6, 1, 8, 3, 3, 5, 5, 8, 3, 6, 8, 3, 2, 8, 4, 8, 2, 3, 5, 5, 9, 9, 8, 2, 5, 3, 0, 5, 7, 5, 6, 4, 9, 0, 7, 6, 7, 9, 1, 6, 5, 6, 8, 0, 5, 9, 1, 9, 3, 7, 0, 4, 5, 2, 8, 4, 4, 6, 8, 9, 4, 1, 1, 9, 3, 9, 5, 3, 3, 5, 6, 9, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See A201741 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=2.79947439778638966726061606183355836832848235599...


MATHEMATICA

a = 1; b = 2; c = 3;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, 2, 3}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 2.7, 2.8}, WorkingPrecision > 110]
RealDigits[r] (* A201892 *)


CROSSREFS

Cf. A201741.
Sequence in context: A124823 A086725 A019950 * A352447 A323528 A073074
Adjacent sequences: A201889 A201890 A201891 * A201893 A201894 A201895


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Dec 06 2011


STATUS

approved



