login
A323082
Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n) = -(n mod 2) if n is a prime, and f(n) = A300840(n) for any other number.
4
1, 2, 3, 4, 3, 5, 3, 4, 6, 7, 3, 8, 3, 9, 10, 11, 3, 6, 3, 12, 13, 14, 3, 8, 15, 16, 17, 18, 3, 10, 3, 11, 19, 20, 21, 22, 3, 23, 24, 12, 3, 13, 3, 25, 26, 27, 3, 28, 29, 15, 30, 31, 3, 17, 32, 18, 33, 34, 3, 35, 3, 36, 37, 38, 39, 19, 3, 40, 41, 21, 3, 22, 3, 42, 43, 44, 45, 24, 3, 46, 47, 48, 3, 49, 50, 51, 52, 25, 3, 26, 53, 54, 55, 56, 57, 28, 3, 29, 58, 59, 3, 30, 3, 31
OFFSET
1,2
COMMENTS
For all i, j: A323074(i) = A323074(j) => a(i) = a(j).
Like the related A322822 also this filter sequence satisfies the following two implications, for all i, j >= 1:
a(i) = a(j) => A322356(i) = A322356(j),
a(i) = a(j) => A290105(i) = A290105(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
ispow2(n) = (n && !bitand(n, n-1));
A302777(n) = ispow2(isprimepower(n));
A050376list(up_to) = { my(v=vector(up_to), i=0); for(n=1, oo, if(A302777(n), i++; v[i] = n); if(i == up_to, return(v))); };
v050376 = A050376list(up_to);
A050376(n) = v050376[n];
A052330(n) = { my(p=1, i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&A302777(n/d), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A300840(n) = A052330(A052331(n)>>1);
A323082aux(n) = if(isprime(n), -(n%2), A300840(n));
v323082 = rgs_transform(vector(up_to, n, A323082aux(n)));
A323082(n) = v323082[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 04 2019
STATUS
approved