login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212356
Number of terms of the cycle index polynomial Z(D_n) for the dihedral group D_n.
3
1, 2, 3, 4, 3, 5, 3, 5, 4, 5, 3, 7, 3, 5, 5, 6, 3, 7, 3, 7, 5, 5, 3, 9, 4, 5, 5, 7, 3, 9, 3, 7, 5, 5, 5, 10, 3, 5, 5, 9, 3, 9, 3, 7, 7, 5, 3, 11, 4, 7, 5, 7, 3, 9, 5, 9, 5, 5, 3, 13, 3, 5, 7, 8, 5, 9, 3, 7, 5, 9, 3, 13, 3, 5, 7, 7, 5, 9, 3, 11, 6, 5, 3, 13, 5, 5, 5, 9, 3, 13
OFFSET
1,2
COMMENTS
See A212355 for the formula for the cycle index Z(D_n) of the dihedral group, the Harary and Palmer reference, and a link for these polynomials for n=1..15.
It seems that this is also the number of different sets of distances of n points placed on 2n equidistant points on a circle. - M. F. Hasler, Jan 28 2013
LINKS
FORMULA
a(n) is the number of non-vanishing entries in row n of the array A212355.
a(1) = 1, a(2) = 2, and a(n) = tau(n) + 1, n>=3, with tau(n) the number of all divisors of n, given in A000005(n).
Except for a(1) and a(2), a(n) = A161886(n+1) - A161886(n). - Eric Desbiaux, Sep 25 2013
EXAMPLE
a(6) = 5, because tau(6) = 4. The row no. 6 of A212355 is [2,0,0,2,0,0,4,0,3,0,1] with 5 non-vanishing entries.
Illustration of a(7)=3 = number of different sets of distances of 7 points among {z=e^(i k pi/7), k=0..13}: Inequivalent configurations are, e.g.: [k]=[0,2,4,6,8,10,12] with distances {0.86777, 1.5637, 1.9499}, [k]=[0,1,2,3,4,5,6] with distances {0.44504, 0.86777, 1.2470, 1.5637, 1.8019, 1.9499}, and [k]=[0,1,2,3,4,5,7] with distances {0.44504, 0.86777, 1.2470, 1.5637, 1.8019, 1.9499, 2.0000}. - M. F. Hasler, Jan 28 2013
PROG
(PARI) A212356(n) = if(n<=2, n, 1+numdiv(n)); \\ Antti Karttunen, Sep 22 2017
CROSSREFS
Sequence in context: A325382 A324401 A323082 * A322816 A323078 A331301
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 02 2012
STATUS
approved