OFFSET
1,2
COMMENTS
The original name was: "Filter sequence for a(odd prime) = constant sequences", which stemmed from the fact that for all i, j, a(i) = a(j) => b(i) = b(j) for any sequence b that obtains a constant value for all odd primes A065091.
For example, we have for all i, j:
There are several filter sequences "above" this one (meaning that they have finer equivalence class partitioning), for example, we have, for all i, j:
[where odd primes are further distinguished by]
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..100000
FORMULA
MATHEMATICA
Array[If[# <= 2, #, If[PrimeQ[#], 3, 2 + # - PrimePi[#]]] &, 105] (* Michael De Vlieger, Oct 18 2021 *)
PROG
(PARI) A305801(n) = if(n<=2, n, if(isprime(n), 3, 2+n-primepi(n)));
CROSSREFS
Cf. A305900, A319350, A319704, A319705, A331304, A336855 (sequences with finer equivalence class partitioning).
Cf. A305800, A305890, A305891, A305896, A318500, A318888, A319346, A319347, A319349, A319701, A322591, A322809, A322810, A323078, A323367, A323082, A323369, A323370, A323371, A323374, A323400, A324401, A326199, A326201, A326203, A326203, A328470, A329608, A331174, A331730, A331301 (sequences with coarser equivalence class partitioning).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 14 2018
EXTENSIONS
Name changed and Comment section rewritten by Antti Karttunen, Oct 17 2021
STATUS
approved