login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323370
Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A000035(n), A003557(n), A023900(n)] for all other numbers, except f(n) = 0 for odd primes.
5
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 26, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 40, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 57, 52, 3, 58, 59, 60, 3, 61, 62, 63, 64, 65, 3, 66, 67, 68, 57, 69, 67, 70, 3, 71, 72, 73, 3, 74, 3, 75, 76
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of function f, defined as f(n) = 0 when n is an odd prime, and f(n) = [A000035(n), A003557(n), A023900(n)] for all other numbers.
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A323367(i) = A323367(j),
a(i) = a(j) => A323371(i) = A323371(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0, f[i, 2]-1)); factorback(f); };
A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
Aux323370(n) = if((n>2)&&isprime(n), 0, [(n%2), A003557(n), A023900(n)]);
v323370 = rgs_transform(vector(up_to, n, Aux323370(n)));
A323370(n) = v323370[n];
CROSSREFS
Differs from A323405 for the first time at n=78, where a(78) = 52, while A323405(78) = 58.
Sequence in context: A323369 A323400 A323367 * A323405 A353521 A319349
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 13 2019
STATUS
approved