login
A321454
Numbers that can be factored into two or more factors all having the same sum of prime indices.
30
4, 8, 9, 12, 16, 25, 27, 30, 32, 36, 40, 48, 49, 63, 64, 70, 81, 84, 90, 100, 108, 112, 120, 121, 125, 128, 144, 150, 154, 160, 165, 169, 180, 192, 196, 198, 200, 210, 216, 220, 225, 240, 243, 252, 256, 264, 270, 273, 280, 286, 288, 289, 300, 320, 324, 325
OFFSET
1,1
COMMENTS
Also Heinz numbers of integer partitions that can be partitioned into two or more blocks with equal sums. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n).
EXAMPLE
The sequence of all integer partitions that can be partitioned into two or more blocks with equal sums begins: (11), (111), (22), (211), (1111), (33), (222), (321), (11111), (2211), (3111), (21111), (44), (422), (111111), (431), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (333), (1111111), (221111), (3321), (541), (311111), (532), (66), (32211), (2111111), (4411), (5221), (33111).
The Heinz number of (32111) is 120, which has factorization (10*12) corresponding to the multiset partition ((13)(112)) whose blocks have equal sums, so 120 belongs to the sequence.
MATHEMATICA
hwt[n_]:=Total[Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]*k]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Select[Range[100], Select[facs[#], And[Length[#]>1, SameQ@@hwt/@#]&]!={}&]
CROSSREFS
Positions of terms > 1 in A321455.
Sequence in context: A374037 A102211 A244032 * A353834 A319302 A119025
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 10 2018
STATUS
approved