OFFSET
0,5
COMMENTS
a(n) = 1 if and only if n is prime. - Chai Wah Wu, Nov 12 2018
EXAMPLE
The a(2) = 1 through a(9) = 10 partitions:
(11) (111) (22) (11111) (33) (1111111) (44) (333)
(211) (222) (422) (3321)
(1111) (321) (431) (32211)
(2211) (2222) (33111)
(3111) (3221) (222111)
(21111) (3311) (321111)
(111111) (4211) (2211111)
(22211) (3111111)
(32111) (21111111)
(41111) (111111111)
(221111)
(311111)
(2111111)
(11111111)
The partition (32111) can be partitioned as ((13)(112)), and the blocks both sum to 4, so (32111) is counted under a(8).
MATHEMATICA
hwt[n_]:=Total[Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]*k]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[IntegerPartitions[n], Length[Select[facs[Times@@Prime/@#], SameQ@@hwt/@#&]]>1&]], {n, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 10 2018
EXTENSIONS
a(26)-a(52) from Alois P. Heinz, Nov 11 2018
STATUS
approved