login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321452
Number of integer partitions of n that can be partitioned into two or more blocks with equal sums.
33
0, 0, 1, 1, 3, 1, 7, 1, 14, 10, 26, 1, 55, 1, 90, 68, 167, 1, 292, 1, 482, 345, 761, 1, 1291, 266, 1949, 1518, 3091, 1, 4793, 1, 7177, 5612, 10566, 2623, 16007, 1, 22912, 18992, 33619, 1, 48529, 1, 68758, 59187, 96571, 1, 137489, 11418, 189979, 167502, 264299
OFFSET
0,5
COMMENTS
a(n) = 1 if and only if n is prime. - Chai Wah Wu, Nov 12 2018
FORMULA
a(n) = A000041(n) - A321451(n).
EXAMPLE
The a(2) = 1 through a(9) = 10 partitions:
(11) (111) (22) (11111) (33) (1111111) (44) (333)
(211) (222) (422) (3321)
(1111) (321) (431) (32211)
(2211) (2222) (33111)
(3111) (3221) (222111)
(21111) (3311) (321111)
(111111) (4211) (2211111)
(22211) (3111111)
(32111) (21111111)
(41111) (111111111)
(221111)
(311111)
(2111111)
(11111111)
The partition (32111) can be partitioned as ((13)(112)), and the blocks both sum to 4, so (32111) is counted under a(8).
MATHEMATICA
hwt[n_]:=Total[Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]*k]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[IntegerPartitions[n], Length[Select[facs[Times@@Prime/@#], SameQ@@hwt/@#&]]>1&]], {n, 10}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 10 2018
EXTENSIONS
a(26)-a(52) from Alois P. Heinz, Nov 11 2018
STATUS
approved