login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321456
Numbers k that are divisible by sum(pi)^2+sum(ei) where k=p1^e1*...*pj^ej with pi primes.
0
16, 192, 288, 704, 1470, 2112, 2160, 3168, 3240, 3872, 4096, 4608, 4752, 4860, 5400, 6912, 7128, 7245, 8100, 9295, 10368, 11616, 13500, 15552, 15900, 17424, 21296, 23328, 23850, 26136, 27720, 32830, 34992, 35960, 39600, 39750, 41536, 45584, 52250, 52488, 59400, 62920, 63888, 67200, 78732, 81920, 86430
OFFSET
1,1
COMMENTS
Numbers k that are divisible by A001222(k)+A235323(k).
EXAMPLE
704 is an item as its prime factorization is 2^6+11^1, sum(pi)=2+11=13, sum(e1)=6+1=7, sum(pi)^2+sum(e1)=13^2+7=169+7=176, finally 704=c*176 for c=4.
MATHEMATICA
fun[n_] := Module[{f = FactorInteger[n]}, Total@f[[;; , 1]]^2 + Total@f[[;; , 2]]]; aQ[n_] := Divisible[n, fun[n]]; Select[Range[100000], aQ] (* Amiram Eldar, Nov 18 2018 *)
PROG
(Python)
from sympy.ntheory import factorint, isprime
n=100000
r=""
def calc(n):
global r
a=factorint(n)
lp=[]
for p in a.keys():
lp.append(p)
lexp=[]
for exp in a.values():
lexp.append(exp)
if n%((sum(lp))**2+sum(lexp))==0:
r += ", "
r += str(n)
return
for i in range(4, n):
calc(i)
print(r[1:])
(PARI) ok(k)={my(f=factor(k)); k > 1 && k % (vecsum(f[, 2]) + vecsum(f[, 1])^2) == 0} \\ Andrew Howroyd, Nov 19 2018
CROSSREFS
Sequence in context: A004333 A016237 A036735 * A304307 A316206 A302298
KEYWORD
nonn
AUTHOR
Pierandrea Formusa, Nov 18 2018
STATUS
approved