Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 28 2024 10:49:56
%S 16,192,288,704,1470,2112,2160,3168,3240,3872,4096,4608,4752,4860,
%T 5400,6912,7128,7245,8100,9295,10368,11616,13500,15552,15900,17424,
%U 21296,23328,23850,26136,27720,32830,34992,35960,39600,39750,41536,45584,52250,52488,59400,62920,63888,67200,78732,81920,86430
%N Numbers k that are divisible by sum(pi)^2+sum(ei) where k=p1^e1*...*pj^ej with pi primes.
%C Numbers k that are divisible by A001222(k)+A235323(k).
%e 704 is an item as its prime factorization is 2^6+11^1, sum(pi)=2+11=13, sum(e1)=6+1=7, sum(pi)^2+sum(e1)=13^2+7=169+7=176, finally 704=c*176 for c=4.
%t fun[n_] := Module[{f = FactorInteger[n]}, Total@f[[;;, 1]]^2 + Total@f[[;;, 2]]]; aQ[n_] := Divisible[n, fun[n]]; Select[Range[100000], aQ] (* _Amiram Eldar_, Nov 18 2018 *)
%o (Python)
%o from sympy.ntheory import factorint, isprime
%o n=100000
%o r=""
%o def calc(n):
%o global r
%o a=factorint(n)
%o lp=[]
%o for p in a.keys():
%o lp.append(p)
%o lexp=[]
%o for exp in a.values():
%o lexp.append(exp)
%o if n%((sum(lp))**2+sum(lexp))==0:
%o r += ","
%o r += str(n)
%o return
%o for i in range(4,n):
%o calc(i)
%o print(r[1:])
%o (PARI) ok(k)={my(f=factor(k)); k > 1 && k % (vecsum(f[,2]) + vecsum(f[,1])^2) == 0} \\ _Andrew Howroyd_, Nov 19 2018
%Y Cf. A001222, A235323.
%K nonn
%O 1,1
%A _Pierandrea Formusa_, Nov 18 2018