login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302298
Wiener index of the graph of nodes (i,j) of the square lattice such that abs(i) + abs(j) <= n.
0
0, 16, 192, 1008, 3504, 9504, 21840, 44576, 83232, 145008, 239008, 376464, 570960, 838656, 1198512, 1672512, 2285888, 3067344, 4049280, 5268016, 6764016, 8582112, 10771728, 13387104, 16487520, 20137520, 24407136, 29372112, 35114128, 41721024, 49287024, 57912960, 67706496
OFFSET
0,2
COMMENTS
The considered grid distance is the Manhattan distance (taxicab metric).
LINKS
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Wiener Index
Eric Weisstein's World of Mathematics, Taxicab Metric
FORMULA
Conjectures from Colin Barker, Apr 08 2018: (Start)
G.f.: 16*x*(1 + x)*(1 + 5*x + x^2) / (1 - x)^6.
a(n) = 2*(n*(6 + 25*n + 40*n^2 + 35*n^3 + 14*n^4)) / 15.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
MATHEMATICA
a[n_]:=(1/2)*Sum[Sum[Sum[Sum[
Abs[i2-i1] + Abs[j2-j1],
{j1, Abs[i1]-n, n-Abs[i1]}], {i1, -n, n}],
{j2, Abs[i2]-n, n-Abs[i2]}], {i2, -n, n}];
Table[a[n], {n, 0, 32}]
CROSSREFS
Sequence in context: A321456 A304307 A316206 * A305773 A317122 A230832
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Apr 04 2018
STATUS
approved