login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143945
Wiener index of the grid P_n x P_n, where P_n is the path graph on n vertices.
5
0, 8, 72, 320, 1000, 2520, 5488, 10752, 19440, 33000, 53240, 82368, 123032, 178360, 252000, 348160, 471648, 627912, 823080, 1064000, 1358280, 1714328, 2141392, 2649600, 3250000, 3954600, 4776408, 5729472, 6828920, 8091000, 9533120, 11173888, 13033152, 15132040
OFFSET
1,2
COMMENTS
The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000 (corrected by Ray Chandler, Jan 19 2019)
Dragan Stevanovic, Hosoya polynomial of composite graphs, Discrete Math., Vol. 235, No. 1-3 (2001), pp. 237-244.
B.-Y. Yang and Y.-N. Yeh, Wiener polynomials of some chemically interesting graphs, International Journal of Quantum Chemistry, Vol. 99 (2004), pp. 80-91.
Y.-N. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Math., Vol. 135, No. 1-3 (1994), pp. 359-365.
Eric Weisstein's World of Mathematics, Grid Graph.
Eric Weisstein's World of Mathematics, Wiener Index.
FORMULA
a(n) = Sum_{k=1..2n-2} k*A143944(n,k).
a(n) = n^3*(n^2-1)/3.
a(n) = 8*A006414(n-2). G.f.: 8*x^2*(1+3*x+x^2)/(x-1)^6. - R. J. Mathar, Sep 15 2010
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), a(2)=8, a(3)=72, a(4)=320, a(5)=1000, a(6)=2520, a(7)=5488. - Harvey P. Dale, Feb 07 2014
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=2} 1/a(n) = 15/4 - 3*zeta(3).
Sum_{n>=2} (-1)^n/a(n) = 9*zeta(3)/4 + 6*log(2) - 27/4. (End)
EXAMPLE
a(2)=8 because in P_2 x P_2 (a square) there are 4 distances equal to 1 and 2 distances equal to 2 (4*1 + 2*2 = 8).
MAPLE
seq((1/3)*n^3*(n^2-1), n=1..33);
MATHEMATICA
Table[n^3 (n^2 - 1)/3, {n, 40}] (* Harvey P. Dale, Feb 07 2014 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 8, 72, 320, 1000, 2520}, 30] (* Harvey P. Dale, Feb 07 2014 *)
CoefficientList[Series[8 x (1 + 3 x + x^2)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 08 2014 *)
PROG
(Magma) [n^3*(n^2-1)/3: n in [1..40]]; // Vincenzo Librandi, Feb 08 2014
(PARI) a(n)=n^3*(n^2-1)/3 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Main diagonal of A143368.
Sequence in context: A044576 A104453 A254371 * A239095 A189954 A271028
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Sep 20 2008
STATUS
approved