login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143368
Triangle read by rows: T(n,k) is the Wiener index of a k X n grid (i.e., P_k X P_n, where P_m is the path graph on m vertices; 1 <= k <= n).
3
0, 1, 8, 4, 25, 72, 10, 56, 154, 320, 20, 105, 280, 570, 1000, 35, 176, 459, 920, 1595, 2520, 56, 273, 700, 1386, 2380, 3731, 5488, 84, 400, 1012, 1984, 3380, 5264, 7700, 10752, 120, 561, 1404, 2730, 4620, 7155, 10416, 14484, 19440
OFFSET
1,3
COMMENTS
The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
This is the lower triangular half of a symmetric square array.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150).
A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem., 8 (1991), 53-62.
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Wiener Index
FORMULA
T(n,k) = k*n*(n+k)*(k*n-1)/6 (k, n >= 1).
EXAMPLE
Presentation as symmetric square array starts:
======================================================
n\k| 1 2 3 4 5 6 7 8 9
---|--------------------------------------------------
1 | 0 1 4 10 20 35 56 84 120 ...
2 | 1 8 25 56 105 176 273 400 561 ...
3 | 4 25 72 154 280 459 700 1012 1404 ...
4 | 10 56 154 320 570 920 1386 1984 2730 ...
5 | 20 105 280 570 1000 1595 2380 3380 4620 ...
6 | 35 176 459 920 1595 2520 3731 5264 7155 ...
7 | 56 273 700 1386 2380 3731 5488 7700 10416 ...
8 | 84 400 1012 1984 3380 5264 7700 10752 14484 ...
9 | 120 561 1404 2730 4620 7155 10416 14484 19440 ...
... - Andrew Howroyd, May 27 2017
T(2,2)=8 because in a square we have four distances equal to 1 and two distances equal to 2.
T(2,1)=1 because on the path graph on two vertices there is one distance equal to 1.
T(3,2)=25 because on the P(2) X P(3) graph there are 7 distances equal to 1, 6 distances equal to 2 and 2 distances equal to 3, with 7*1 + 6*2 + 2*3 = 25.
Triangle starts: 0; 1,8; 4,25,72; 10,56,154,320;
MAPLE
T:=proc(n, k) options operator, arrow: (1/6)*k*n*(n+k)*(k*n-1) end proc: for n to 9 do seq(T(n, k), k=1..n) end do; # yields sequence in triangular form
MATHEMATICA
Table[k n (n + k) (k n - 1)/6, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, May 28 2017 *)
PROG
(PARI)
T(n, k)=k*n*(n+k)*(k*n-1)/6;
for (n=1, 8, for(k=1, 8, print1(T(n, k), ", ")); print) \\ Andrew Howroyd, May 27 2017
CROSSREFS
Cf. A180569 (row 3), A131423 (row 2).
Main diagonal is A143945.
Cf. A245826.
Sequence in context: A070290 A307266 A173855 * A160415 A160411 A033473
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 05 2008
STATUS
approved