login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173855
a(n) = A173039(n+4) - A173039(n+1).
1
8, 4, 24, 40, 12, 56, 72, 20, 88, 104, 28, 120, 136, 36, 152, 168, 44, 184, 200, 52, 216, 232, 60, 248, 264, 68, 280, 296, 76, 312, 328, 84, 344, 360, 92, 376, 392, 100, 408, 424, 108, 440, 456, 116, 472, 488, 124, 504, 520, 132, 536, 552, 140, 568, 584, 148
OFFSET
1,1
COMMENTS
From Balmer odd terms. Note that ( (a(n+1)=8,) - (Balmer A061037 odd numbers = A173039(n+4) = 5, ) = 3, 1, 3, -5, -3, -21, ... = -A173039.
FORMULA
a(n) = 4*A173773(n).
a(n) = 2*a(n-3) - a(n-6). - Colin Barker, Oct 15 2014
G.f.: 4*x*(x+1)*(2*x^4 - x^3 + 7*x^2 - x + 2) / ((x-1)^2*(x^2 + x + 1)^2). - Colin Barker, Oct 15 2014
EXAMPLE
a(1) = 5 - (-3) = 8, a(2) = 3 - (-1) = 4, a(3) = 21 - (-3) = 24.
MAPLE
a:= LREtools[REtoproc](f(n) = 2*f(n-3)-f(n-6), f(n), zip((s, t)->f(s)=t, [$1..6], [8, 4, 24, 40, 12, 56]), remember):
seq(a(n), n=1..100); # Robert Israel, Oct 15 2014
MATHEMATICA
Rest[CoefficientList[Series[4*x*(x+1)*(2*x^4-x^3+7*x^2-x+2)/((x-1)^2*(x^2 +x+1)^2), {x, 0, 50}], x]] (* G. C. Greubel, Sep 20 2018 *)
PROG
(PARI) Vec(4*x*(x+1)*(2*x^4-x^3+7*x^2-x+2)/((x-1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Oct 15 2014
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(4*x*(x+1)*(2*x^4-x^3+7*x^2-x+2)/((x-1)^2*(x^2+x+1)^2))); // G. C. Greubel, Sep 20 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 26 2010
EXTENSIONS
More terms from Colin Barker, Oct 15 2014
STATUS
approved