login
A173853
The smallest distance d>1 such that A033308(n+d)= A033308(n).
0
12, 6, 24, 6, 1, 1, 2, 6, 2, 10, 7, 4, 2, 3, 48, 14, 2, 4, 5, 6, 2, 10, 2, 4, 50, 8, 2, 10, 49, 10, 2, 4, 51, 1, 2, 11, 2, 4, 7, 4, 2, 10, 53, 1, 13, 9, 2, 3, 1, 3, 3, 9, 3, 3, 9, 3, 102, 15, 1, 2, 5, 3, 47, 6, 2, 3, 1, 3, 3, 12, 3, 13, 3, 3, 54, 18, 2, 3, 1, 3, 51, 6, 3, 3, 6, 3, 51, 2, 3, 3, 12, 3, 13, 5, 2, 54, 1, 2, 3, 1, 3, 3, 12, 3, 3, 12, 4, 1, 12, 3, 1, 18, 1, 2, 8, 1, 2, 18, 1, 2, 6, 3, 1, 2, 3, 13, 15, 3, 48, 3, 3, 3, 12, 3, 48, 8, 3, 3, 15, 3, 48, 14, 3, 3, 6, 3, 1, 12, 3, 3, 11, 3, 45, 3
OFFSET
1,1
EXAMPLE
A033308: 2,3,5,7,1,1,1,3,1,7,1,9,2,3,2,9,3,1,3,7,4,1,4,3,4,7,5,3.
n=1: A033308[1]=2=A033308[13], m=13, hence a(1)=13-1=12;
n=3: A033308[3]=5=A033308[27], m=27, hence a(3)=27-3=24.
MATHEMATICA
FL=Flatten[IntegerDigits/@Prime[Range[1000]]]; Le=Length@FL; re=Reap[Do[a=FL[[k1]];
Do[If[FL[[k2]]==a, Sow[{k1, k2-k1, k2}]; Break[]], {k2, k1+1, Le}], {k1, 200}]][[2, 1]]; #[[2]]&/@re
CROSSREFS
A033308 Decimal expansion of Copeland-Erdos constant: concatenate primes.
Sequence in context: A328043 A075247 A257841 * A040135 A004015 A119870
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Nov 26 2010
STATUS
approved