OFFSET
1,2
COMMENTS
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
G.f. = G(q,z) = qz(1+2z+qz)/((1-qz)(1-z)^2).
EXAMPLE
T(2,1)=4 because in the graph P_2 x P_2 (a square) we have 4 distances equal to 1.
Triangle starts:
1;
4, 2;
7, 6, 2;
10, 10, 6, 2;
13, 14, 10, 6, 2;
MAPLE
G:=q*z*(1+2*z+q*z)/((1-z)^2*(1-q*z)): Gser:= simplify(series(G, z=0, 15)): for n to 12 do p[n]:=sort(coeff(Gser, z, n)) end do: for n to 12 do seq(coeff(p[n], q, j), j=1..n) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 05 2008
STATUS
approved