login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143370 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the grid P_2 x P_n (1 <= k <= n). P_m is the path graph on m vertices. 1
1, 4, 2, 7, 6, 2, 10, 10, 6, 2, 13, 14, 10, 6, 2, 16, 18, 14, 10, 6, 2, 19, 22, 18, 14, 10, 6, 2, 22, 26, 22, 18, 14, 10, 6, 2, 25, 30, 26, 22, 18, 14, 10, 6, 2, 28, 34, 30, 26, 22, 18, 14, 10, 6, 2, 31, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2, 34, 42, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Sum of entries in row n = n(2n-1) = A000384(n).
The entries in row n are the coefficients of the Wiener polynomial of the grid P_2 x P_n.
Sum_{k=1..n} k*T(n,k) = A131423(n) = the Wiener index of the grid P_2 x P_n.
The average of all distances in the grid P_2 x P_n is (n+2)/3.
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
G.f. = G(q,z) = qz(1+2z+qz)/((1-qz)(1-z)^2).
EXAMPLE
T(2,1)=4 because in the graph P_2 x P_2 (a square) we have 4 distances equal to 1.
Triangle starts:
1;
4, 2;
7, 6, 2;
10, 10, 6, 2;
13, 14, 10, 6, 2;
MAPLE
G:=q*z*(1+2*z+q*z)/((1-z)^2*(1-q*z)): Gser:= simplify(series(G, z=0, 15)): for n to 12 do p[n]:=sort(coeff(Gser, z, n)) end do: for n to 12 do seq(coeff(p[n], q, j), j=1..n) end do; # yields sequence in triangular form
CROSSREFS
Cf. A000384.
Sequence in context: A002560 A124908 A260593 * A367832 A307869 A016695
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 05 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 10:18 EDT 2024. Contains 374244 sequences. (Running on oeis4.)