login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143370
Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the grid P_2 x P_n (1 <= k <= n). P_m is the path graph on m vertices.
1
1, 4, 2, 7, 6, 2, 10, 10, 6, 2, 13, 14, 10, 6, 2, 16, 18, 14, 10, 6, 2, 19, 22, 18, 14, 10, 6, 2, 22, 26, 22, 18, 14, 10, 6, 2, 25, 30, 26, 22, 18, 14, 10, 6, 2, 28, 34, 30, 26, 22, 18, 14, 10, 6, 2, 31, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2, 34, 42, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2
OFFSET
1,2
COMMENTS
Sum of entries in row n = n(2n-1) = A000384(n).
The entries in row n are the coefficients of the Wiener polynomial of the grid P_2 x P_n.
Sum_{k=1..n} k*T(n,k) = A131423(n) = the Wiener index of the grid P_2 x P_n.
The average of all distances in the grid P_2 x P_n is (n+2)/3.
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
G.f. = G(q,z) = qz(1+2z+qz)/((1-qz)(1-z)^2).
EXAMPLE
T(2,1)=4 because in the graph P_2 x P_2 (a square) we have 4 distances equal to 1.
Triangle starts:
1;
4, 2;
7, 6, 2;
10, 10, 6, 2;
13, 14, 10, 6, 2;
MAPLE
G:=q*z*(1+2*z+q*z)/((1-z)^2*(1-q*z)): Gser:= simplify(series(G, z=0, 15)): for n to 12 do p[n]:=sort(coeff(Gser, z, n)) end do: for n to 12 do seq(coeff(p[n], q, j), j=1..n) end do; # yields sequence in triangular form
CROSSREFS
Cf. A000384.
Sequence in context: A002560 A124908 A260593 * A367832 A307869 A016695
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 05 2008
STATUS
approved