

A033473


Numerator of (2*n+1)!*8*Bernoulli(2*n,1/2).


4



8, 4, 28, 930, 96012, 24144750, 12602990070, 12203470904625, 20180112406353900, 53495387545025175750, 216267236072968468547250, 1280630367874799320798794375, 10743714652441927865738713818750, 124178158916511109662405449217796875
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

As R. Israel remarks, the expression (2*n+1)!*8*Bernoulli(2*n,1/2) is no longer an integer for n = 15, 23, 27, 29, 30, 31, 39, 43, 45, 46, 47,...  M. F. Hasler, Feb 16 2014
Denominators are in A238015. See A238163 for the rounded values and A238164 for another maybe more interesting variant.  M. F. Hasler, Mar 01 2014


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..150
Index entries for sequences related to Bernoulli numbers.


MATHEMATICA

a[n_] := Numerator[ (2 n + 1)! 8 BernoulliB[2 n, 1/2]]; Array[a, 14, 0] (* Robert G. Wilson v, Feb 17 2014, edited by M. F. Hasler, Mar 01 2014 *)
Table[Numerator[(2 n + 1)! 8 BernoulliB[2 n, 1/2]], {n, 0, 20}] (* Vincenzo Librandi, Feb 18 2014 *)


PROG

(PARI) A033473 = n>numerator((2*n+1)!*8*subst(bernpol(2*n, x), x, 1/2)) \\ M. F. Hasler, Feb 1618 2014


CROSSREFS

Cf. A238163, A238164.
Sequence in context: A143368 A160415 A160411 * A238163 A213773 A213178
Adjacent sequences: A033470 A033471 A033472 * A033474 A033475 A033476


KEYWORD

sign


AUTHOR

N. J. A. Sloane


EXTENSIONS

Definition changed by M. F. Hasler, Feb 16 2014
Further edits by M. F. Hasler, Mar 01 2014


STATUS

approved



