|
|
A033473
|
|
Numerator of (2*n+1)!*8*Bernoulli(2*n,1/2).
|
|
4
|
|
|
8, -4, 28, -930, 96012, -24144750, 12602990070, -12203470904625, 20180112406353900, -53495387545025175750, 216267236072968468547250, -1280630367874799320798794375, 10743714652441927865738713818750, -124178158916511109662405449217796875
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
As R. Israel remarks, the expression (2*n+1)!*8*Bernoulli(2*n,1/2) is no longer an integer for n = 15, 23, 27, 29, 30, 31, 39, 43, 45, 46, 47,... - M. F. Hasler, Feb 16 2014
Denominators are in A238015. See A238163 for the rounded values and A238164 for another maybe more interesting variant. - M. F. Hasler, Mar 01 2014
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..150
Index entries for sequences related to Bernoulli numbers.
|
|
MATHEMATICA
|
a[n_] := Numerator[ (2 n + 1)! 8 BernoulliB[2 n, 1/2]]; Array[a, 14, 0] (* Robert G. Wilson v, Feb 17 2014, edited by M. F. Hasler, Mar 01 2014 *)
Table[Numerator[(2 n + 1)! 8 BernoulliB[2 n, 1/2]], {n, 0, 20}] (* Vincenzo Librandi, Feb 18 2014 *)
|
|
PROG
|
(PARI) A033473 = n->numerator((2*n+1)!*8*subst(bernpol(2*n, x), x, 1/2)) \\ M. F. Hasler, Feb 16-18 2014
|
|
CROSSREFS
|
Cf. A238163, A238164.
Sequence in context: A143368 A160415 A160411 * A238163 A213773 A213178
Adjacent sequences: A033470 A033471 A033472 * A033474 A033475 A033476
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Definition changed by M. F. Hasler, Feb 16 2014
Further edits by M. F. Hasler, Mar 01 2014
|
|
STATUS
|
approved
|
|
|
|