login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321387 Expansion of Product_{k>=1} (1 + x^k)^(k^(k-1)). 3
1, 1, 2, 11, 74, 708, 8583, 127424, 2239965, 45514345, 1049365071, 27061132159, 771695223819, 24109698083919, 818914886275467, 30044684789498522, 1184048086192376822, 49883929845112421452, 2237287911899357657492, 106426388125032988691636, 5352033610656721914626572 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Weigh transform of A000169.

LINKS

Table of n, a(n) for n=0..20.

N. J. A. Sloane, Transforms

FORMULA

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^d ) * x^k/k).

a(n) ~ n^(n-1) * (1 + exp(-1)/n + (3*exp(-1)/2 + 2*exp(-2))/n^2). - Vaclav Kotesovec, Nov 09 2018

MAPLE

a:=series(mul((1+x^k)^(k^(k-1)), k=1..100), x=0, 21): seq(coeff(a, x, n), n=0..20); # Paolo P. Lava, Apr 02 2019

MATHEMATICA

nmax = 20; CoefficientList[Series[Product[(1 + x^k)^(k^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 20}]

PROG

(PARI) seq(n)={Vec(exp(sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d^d ) * x^k/k) + O(x*x^n)))} \\ Andrew Howroyd, Nov 09 2018

(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^(k^(k-1)))) \\ G. C. Greubel, Nov 09 2018

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^(k-1)): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018

CROSSREFS

Cf. A000169, A023879, A261053, A283335, A321385, A321388.

Sequence in context: A212028 A324445 A158265 * A309146 A198088 A112894

Adjacent sequences:  A321384 A321385 A321386 * A321388 A321389 A321390

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Nov 08 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 14:10 EST 2021. Contains 349430 sequences. (Running on oeis4.)