login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283335
Expansion of exp( Sum_{n>=1} -A062796(n)/n*x^n ) in powers of x.
2
1, -1, -2, -7, -54, -544, -7005, -108220, -1958263, -40629205, -951376217, -24826365255, -714568797261, -22491957589783, -768651303338761, -28344950796904518, -1121910285249842486, -47442295013058570884, -2134673855370621621400
OFFSET
0,3
LINKS
FORMULA
G.f.: Product_{k>=1} (1 - x^k)^(k^(k-1)).
a(n) = -(1/n)*Sum_{k=1..n} A062796(k)*a(n-k) for n > 0.
MATHEMATICA
A[n_] := Sum[d^d, {d, Divisors[n]}]; a[n_] := If[n==0, 1, -(1/n)*Sum[A[k]*a[n - k], {k, n}]]; Table[a[n], {n, 0, 18}] (* Indranil Ghosh, Mar 11 2017 *)
PROG
(PARI) a(n) = if(n==0, 1, -(1/n)*sum(k=1, n, sumdiv(k, d, d^d)*a(n - k)));
for(n=0, 18, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 11 2017
CROSSREFS
Cf. A023879 (exp( Sum_{n>=1} A062796(n)/n*x^n )), A062796.
Sequence in context: A024027 A079410 A371617 * A326207 A280221 A371828
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 08 2017
STATUS
approved