login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283336 Expansion of exp( Sum_{n>=1} -sigma_6(n)*x^n/n ) in powers of x. 6
1, -1, -32, -211, -285, 5179, 44784, 162062, -125122, -5187417, -32587255, -95706881, 122837972, 3039216222, 17745876032, 52825817007, -24340390929, -1256623249600, -7805634068163, -26364952524572, -20649978457115, 368666542515083, 2777231006764690 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: Product_{n>=1} (1 - x^n)^(n^5).

a(n) = -(1/n)*Sum_{k=1..n} sigma_6(k)*a(n-k).

MATHEMATICA

a[n_] := If[n<1, 1, -(1/n) * Sum[DivisorSigma[6, k] a[n - k], {k, n}]]; Table[a[n], {n, 0, 22}] (* Indranil Ghosh, Mar 16 2017 *)

PROG

(PARI) a(n) = if(n<1, 1, -(1/n) * sum(k=1, n, sigma(k, 6) * a(n - k)));

for(n=0, 22, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 16 2017

CROSSREFS

Column k=5 of A283272.

Cf. A023874 (exp( Sum_{n>=1} sigma_6(n)*x^n/n )).

Cf. exp( Sum_{n>=1} -sigma_k(n)*x^n/n ): A010815 (k=1), A073592 (k=2), A283263 (k=3), A283264 (k=4), A283271 (k=5), this sequence (k=6), A283337 (k=7), A283338 (k=8), A283339 (k=9), A283340 (k=10).

Sequence in context: A247927 A247928 A184020 * A223023 A119286 A125342

Adjacent sequences:  A283333 A283334 A283335 * A283337 A283338 A283339

KEYWORD

sign

AUTHOR

Seiichi Manyama, Mar 05 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 05:20 EST 2021. Contains 349426 sequences. (Running on oeis4.)