login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283332
a(n) = (Sum_{j=1..(K-1)/2} a(n-2*j+1)*a(n-2*j))/a(n-K) with a(1),...,a(K)=1, where K=9.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 7, 31, 223, 6943, 1548511, 10751318815, 16648535451082975, 178993712437422911994993439, 744995791758846743179449146618806505170999, 19049937502453316579424394593659892304405504872785268490952081866996
OFFSET
1,10
LINKS
Matthew Christopher Russell, Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
MATHEMATICA
a[n_]:=If[n<10, 1, Sum[a[n - 2j + 1]*a[n - 2j], {j, 4}]/a[n - 9]]; Table[a[n], {n, 1, 20}] (* Indranil Ghosh, Mar 18 2017 *)
PROG
(PARI) a(n)= if(n<10, 1, sum(j=1, 4, a(n - 2*j + 1)*a(n - 2*j))/a(n - 9));
for(n=1, 20, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 18 2017
CROSSREFS
Sequence in context: A359706 A156228 A218959 * A000289 A241426 A271676
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 17 2017
EXTENSIONS
More terms from Seiichi Manyama, Mar 17 2017
STATUS
approved