Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Apr 24 2021 03:31:46
%S 1,1,1,1,1,1,1,1,1,4,7,31,223,6943,1548511,10751318815,
%T 16648535451082975,178993712437422911994993439,
%U 744995791758846743179449146618806505170999,19049937502453316579424394593659892304405504872785268490952081866996
%N a(n) = (Sum_{j=1..(K-1)/2} a(n-2*j+1)*a(n-2*j))/a(n-K) with a(1),...,a(K)=1, where K=9.
%H Seiichi Manyama, <a href="/A283332/b283332.txt">Table of n, a(n) for n = 1..25</a>
%H Matthew Christopher Russell, <a href="https://www.semanticscholar.org/paper/Using-experimental-mathematics-to-conjecture-and-in-Russell/fdebe20954dacb7ec7a24afe2cf491b951c5a28d">Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences</a>, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
%t a[n_]:=If[n<10, 1, Sum[a[n - 2j + 1]*a[n - 2j], {j, 4}]/a[n - 9]]; Table[a[n], {n, 1, 20}] (* _Indranil Ghosh_, Mar 18 2017 *)
%o (PARI) a(n)= if(n<10, 1, sum(j=1, 4, a(n - 2*j + 1)*a(n - 2*j))/a(n - 9));
%o for(n=1, 20, print1(a(n), ", ")) \\ _Indranil Ghosh_, Mar 18 2017
%K nonn
%O 1,10
%A _N. J. A. Sloane_, Mar 17 2017
%E More terms from _Seiichi Manyama_, Mar 17 2017