login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321388
Expansion of Product_{k>=1} (1 + x^k)^(k^(k-2)).
2
1, 1, 1, 4, 19, 144, 1443, 18295, 280918, 5069651, 105147307, 2464296222, 64402891501, 1856989724951, 58560557062508, 2004999890781363, 74069439021212783, 2936703201134924845, 124383305232306494864, 5605027085651919547476, 267759074907470856179460, 13516676464234372267564939
OFFSET
0,4
COMMENTS
Weigh transform of A000272.
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^(d-1) ) * x^k/k).
a(n) ~ n^(n-2) * (1 + exp(-1)/n + (5*exp(-1)/2 + exp(-2))/n^2). - Vaclav Kotesovec, Nov 09 2018
MAPLE
a:=series(mul((1+x^k)^(k^(k-2)), k=1..100), x=0, 22): seq(coeff(a, x, n), n=0..21); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(k^(k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 21}]
PROG
(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^(k^(k-2)))) \\ G. C. Greubel, Nov 09 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 + x^k)^(k^(k-2)): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 08 2018
STATUS
approved